| Peer-Reviewed

Multicriteria Decision Methods as an Alternative for Evaluating the UACh Research System

Received: 16 December 2015     Published: 17 December 2015
Views:       Downloads:
Abstract

Research is a core university activity that contributes to the formation of critical thinking by students and teachers and promotes knowledge and scientific development that may help built better societies. The good performance of a university research system depends on, among other things, the ability to properly distribute the limited financial resources that are allocated to this activity. A common problem in grading activities usually considered in research is the integration of a long list of criteria and sub-criteria. The aim of this study was to determine how financial resources are distributed among all the research centers and institutes at the Universidad Autonoma Chapingo (UACh). Three methods were used for weighting criteria: simple ranking, point distribution and analytic hierarchy process. The aggregation of the values was carried out using TOPSIS and weighted sum methods and the resulting distributions were compared to the traditional way of distributing resources. It was concluded that although the differences were not significant, the TOSPIS method provides a more reliable allocation.

Published in Education Journal (Volume 4, Issue 6)
DOI 10.11648/j.edu.20150406.14
Page(s) 343-351
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2015. Published by Science Publishing Group

Keywords

Analytic Hierarchy Process, TOPSIS, Budget Allocation

References
[1] Agencia de Calidad y Prospectiva Universitaria. (2014). Evaluación de Institutos Universitarios de Investigación de la Universidad de Zaragoza, Zaragoza, España: Universitaria de Aragón.
[2] Álvarez, M., Arquero, A. & Martínez, E. (2010). Empleo del AHP (Proceso Analítico Jerárquico) incorporado en SIG para definir el emplazamiento óptimo de equipamientos universitarios. Facultad de Informática (U.P.M.), pp. 579-595.
[3] Aminbakshs, S., Gunduz M. & Sonmez, R. (2013). Safety risk assessment using Analytic Hierarchy Process (AHP) during planning and budgeting of construction projects. National Safety Council and Elsevier Ltd, Volumen 46, p. 99–105.
[4] Aznar, J. & Guijarro, F. (2012). Nuevos métodos de valoración, Modelos Multicriterio. Segunda ed. Valencia España: Universidad Politécnica de Valencia.
[5] Bai, Ch., Dhavale, D. & Sarkis, J. (2014). Integrating Fuzzy C-Means and TOPSIS for performance evaluation: An application and comparative analysis. Expert Systems with Applications, 41, 4186-4196.
[6] Bao, Q., Ruan D., Shen Y., Hermans E. & Janssens D. (2012). TOPSIS and its Extensions: Applications for Road Safety Performance Evaluation. In: C. Kahraman, ed. Computational Intelligence System in Industrial Engineering (pp. 109-132). First edition. Paris, France: Atlantisn Press.
[7] Berumen, S. & Llamazares F. (2007). La utilidad de los métodos de decisión multicriterio (como el AHP) en un entorno de competitividad creciente. Red de Revistas Científicas de América Latina y el Caribe, España y Portugal, 20(34), pp. 65-87.
[8] Canales, A. (2011). El dilema de la investigación universitaria. Perfiles Educativos, vol. XXXII. Instituto de Investigaciones sobre la Universidad y la Educación. México. pp. 34-44.
[9] Ercole, R. A., Alberto, C. L. & Carignano, C. (2007). TOPSIS en medición multicriterio de eficiencia. XXX Congreso Argentino de Profesores Universitario de Costos.
[10] Figueira, J., Greco, S. & Ehrgott M. (2005). Multiple Criteria Decision Analisis: State of the Art Surveys. First ed. Boston, United States of America: Springer Science Business Media.
[11] García, Ma. del S., Lamata, Ma. T. & Ruiz R. (2009). Métodos para la comparación de alternativas mediante un Sistema de Ayuda a la Decisión (S.A.D.) y “Soft Computing”. Primera ed. Cartagena: Universidad Politécnica de Cartagena.
[12] Ishizaka, A. & Labib A. (2009). Analytic Hierarchy Process and Expert Choice: Benefits and Limitations. ORInsight, 22(4), p. 201–220.
[13] Jolai, F., Ahmad Y., Shahanaghi K. & Azari K. (2011). Integrating fuzzy TOPSIS and multi-period goal programming for purchasing multiple products from multiple suppliers. Journal of Purchasing & Supply Management, 17, 42–53.
[14] Joo, J. & Alvarado, V. (2013). Evaluación multicriterio/multiobjetivo aplicada a datos sobre educación: una primera aproximación. Revista Educación y Tecnología, 3, 112-123.
[15] Kahraman, C. (2012). Computational Intelligence Systems in Industrial Engineering. Primera ed. Paris, France: Atlantis Press.
[16] KAO, Chiang and Hwei-Lan Pao, (2009). An evaluation of research performance in management of 168 universities. Scientemetrics, Vol 78, No. 2. pp. 261-277. DOI: 10.1007/s11192-007-1906-6.
[17] Lattuada, M. (2010). La evaluación de la investigación en las universidades argentinas. Contextos, culturas y limitaciones. Revista Iberoamericana de Ciencia, Tegnología y Sociedad, pp. 1-8.
[18] Loret de Mola, V. (2008). La investigación en la universidad peruana: una propuesta de debate. Alternativa Financiera, Universidad de San Martín de Porres, Perú. pp. 119.
[19] Mela, T. T., & Markku H. (2012). Comparative study of multiple criteria decision making methods for building design. Advanced Engineering Informatics, 26, 7116-726.
[20] Mendoza, G. A. & Martins, H. (2006). Multi-criteria decision analysis in natural resource management: A critical review of methods and new modeling paradigms. Forest Ecology and Management, 230, 1-22.
[21] Ministerio de Educación Nacional R. d. C. (2013). Propuesta Metodológica para la Distribución de Recursos, Artículo 87 de la Ley 30 De 1992 Vigencia 2013, Bogotá, Colombia.
[22] Moreno, J. M. (2002). El Proceso Analítico Jerárquico (AHP). Fundamentos, Metodología y Aplicaciones. Revista Electrónica de Comunicaciones y Trabajos de ASEPUMA, 1, 21-53.
[23] Moreno, J. M. & Escobar, Ma. T. (2000). El pesar en el proceso analítico jerárquico 1. REDALYC, 14(1), 95-115.
[24] Morillas, A., Díaz B. & González, J. (1997). Análisis de concordancia comparativa difusa. Propuesta y evaluación mediante un caso práctico. Estadística Española, 142, 67-97.
[25] OECD, (2008). Handbook on Constructing Composite Indicators. First edition. European Commission.
[26] Pacheco, J. F. & Contreras E. (2008). Manual metodológico de evaluación multicriterio para programas y proyectos. Primera ed. Santiago de Chile: Comisión Económica para América Latina y el Caribe (CEPAL).
[27] Papadopulos, A. (2011). Overview and selection of multi-criteria evaluation methods for mitigation/adaptation policy instruments, Greece: National and Kapodistrian University of Athens.
[28] Real, A. & Maldonado, A. (2011). Selección de fresadoras con TOPSIS usando ponderaciones de AHP. CULCyT, 8, 95-102.
[29] Romero, C. (1996). Análisis de las Decisiones Multicriterio. Primera ed. Madrid: HB & h Dirección de Arte y Edición.
[30] Roy, B. (2005). Paradigms and Challenges. In: J. Figueira, S. Greco & M. Ehrgott, edits. Multiple Criteria Decision Analysis (pp. 4-24). Boston, United States of America: Springer Science.
[31] Saaty, T. L. (1980). The Analytic Hierarchy Process. New York: McGraw-Hill.
[32] Sanz, L. (2005). Evaluación de la investigación y sistema de ciencia. Documento de Trabajo 04-07. Unidad de Políticas comparadas del CSIC, Madrid. pp. 1-8.
[33] Triantaphyllou, E. (2000). Multi-Criteria Decision Making Methods: A Comparative Study. Promera ed. Louisiana USA: Springer-Science Business Media.
[34] Yu, T. L., Wei Ch. W. & Han H. W. (2008). AHP- and simulation-based budget determination procedure for public building construction projects. Automation in Construction, 17, 623–632.
[35] Zopounidis, C., Pardalos, M. & Hearn, D. W. (2010). Handbook of Multicriteria Analysis. First ed. Heidelberg, Germany: Springer.
Cite This Article
  • APA Style

    Sandra Santiago-Rodríguez, José Luis Romo-Lozano, Marcos Portillo-Vázquez, Ma. Amparo M. Borja-de la Rosa. (2015). Multicriteria Decision Methods as an Alternative for Evaluating the UACh Research System. Education Journal, 4(6), 343-351. https://doi.org/10.11648/j.edu.20150406.14

    Copy | Download

    ACS Style

    Sandra Santiago-Rodríguez; José Luis Romo-Lozano; Marcos Portillo-Vázquez; Ma. Amparo M. Borja-de la Rosa. Multicriteria Decision Methods as an Alternative for Evaluating the UACh Research System. Educ. J. 2015, 4(6), 343-351. doi: 10.11648/j.edu.20150406.14

    Copy | Download

    AMA Style

    Sandra Santiago-Rodríguez, José Luis Romo-Lozano, Marcos Portillo-Vázquez, Ma. Amparo M. Borja-de la Rosa. Multicriteria Decision Methods as an Alternative for Evaluating the UACh Research System. Educ J. 2015;4(6):343-351. doi: 10.11648/j.edu.20150406.14

    Copy | Download

  • @article{10.11648/j.edu.20150406.14,
      author = {Sandra Santiago-Rodríguez and José Luis Romo-Lozano and Marcos Portillo-Vázquez and Ma. Amparo M. Borja-de la Rosa},
      title = {Multicriteria Decision Methods as an Alternative for Evaluating the UACh Research System},
      journal = {Education Journal},
      volume = {4},
      number = {6},
      pages = {343-351},
      doi = {10.11648/j.edu.20150406.14},
      url = {https://doi.org/10.11648/j.edu.20150406.14},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.edu.20150406.14},
      abstract = {Research is a core university activity that contributes to the formation of critical thinking by students and teachers and promotes knowledge and scientific development that may help built better societies. The good performance of a university research system depends on, among other things, the ability to properly distribute the limited financial resources that are allocated to this activity. A common problem in grading activities usually considered in research is the integration of a long list of criteria and sub-criteria. The aim of this study was to determine how financial resources are distributed among all the research centers and institutes at the Universidad Autonoma Chapingo (UACh). Three methods were used for weighting criteria: simple ranking, point distribution and analytic hierarchy process. The aggregation of the values was carried out using TOPSIS and weighted sum methods and the resulting distributions were compared to the traditional way of distributing resources. It was concluded that although the differences were not significant, the TOSPIS method provides a more reliable allocation.},
     year = {2015}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Multicriteria Decision Methods as an Alternative for Evaluating the UACh Research System
    AU  - Sandra Santiago-Rodríguez
    AU  - José Luis Romo-Lozano
    AU  - Marcos Portillo-Vázquez
    AU  - Ma. Amparo M. Borja-de la Rosa
    Y1  - 2015/12/17
    PY  - 2015
    N1  - https://doi.org/10.11648/j.edu.20150406.14
    DO  - 10.11648/j.edu.20150406.14
    T2  - Education Journal
    JF  - Education Journal
    JO  - Education Journal
    SP  - 343
    EP  - 351
    PB  - Science Publishing Group
    SN  - 2327-2619
    UR  - https://doi.org/10.11648/j.edu.20150406.14
    AB  - Research is a core university activity that contributes to the formation of critical thinking by students and teachers and promotes knowledge and scientific development that may help built better societies. The good performance of a university research system depends on, among other things, the ability to properly distribute the limited financial resources that are allocated to this activity. A common problem in grading activities usually considered in research is the integration of a long list of criteria and sub-criteria. The aim of this study was to determine how financial resources are distributed among all the research centers and institutes at the Universidad Autonoma Chapingo (UACh). Three methods were used for weighting criteria: simple ranking, point distribution and analytic hierarchy process. The aggregation of the values was carried out using TOPSIS and weighted sum methods and the resulting distributions were compared to the traditional way of distributing resources. It was concluded that although the differences were not significant, the TOSPIS method provides a more reliable allocation.
    VL  - 4
    IS  - 6
    ER  - 

    Copy | Download

Author Information
  • División de ciencias Económico-Administrativas, Universidad Autónoma Chapingo, Texcoco, México

  • División de Ciencias Forestales

  • División de ciencias Económico-Administrativas, Universidad Autónoma Chapingo, Texcoco, México

  • División de Ciencias Forestales

  • Sections